A. Brooke-Taylor

Indestructibility of Vopěnka Cardinals

Andrew Brooke-Taylor

University of Bristol

4 February 2010

ション ふゆ アメリア メリア しょうくう

A. Brooke-Taylor

For every proper class A of graphs, there are $\Gamma_1, \Gamma_2 \in A$ such that there exists a non-identity graph homomorphism from Γ_1 to Γ_2 .

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへの

For every proper class A of graphs, there are $\Gamma_1, \Gamma_2 \in A$ such that there exists a non-identity graph homomorphism from Γ_1 to Γ_2 .

Equivalently:

There is no rigid proper class of graphs.

Indestructibility of Vopěnka Cardinals

Vopěnka's Principle

For every proper class A of graphs, there are $\Gamma_1, \Gamma_2 \in A$ such that there exists a non-identity graph homomorphism from Γ_1 to Γ_2 .

Equivalently:

• There is no rigid proper class of graphs.

Given a first order signature $\boldsymbol{\Sigma}$ with at least one binary relation:

For any proper class A of Σ-structures, there are M, N ∈ A such that there is a non-trivial elementary embedding from M to N.

It's easier to talk about inaccessible cardinals than proper classes.

Indestructibility of Vopěnka Cardinals

It's easier to talk about inaccessible cardinals than proper classes. While we're at it, let's settle on $\Sigma = \{E, R\}$ where E is a binary relation and R is a unary relation.

Indestructibility of Vopěnka Cardinals

It's easier to talk about inaccessible cardinals than proper classes. While we're at it, let's settle on $\Sigma = \{E, R\}$ where E is a binary relation and R is a unary relation.

Definition

A cardinal κ is a Vopěnka cardinal if κ is inaccessible, and for every set $A \subset V_{\kappa}$ of cardinality κ of Σ -structures, there are $\mathcal{M}, \mathcal{N} \in A$ such that there exists a non-trivial elementary embedding from \mathcal{M} to \mathcal{N} . Indestructibility of Vopěnka Cardinals

It's easier to talk about inaccessible cardinals than proper classes. While we're at it, let's settle on $\Sigma = \{E, R\}$ where E is a binary relation and R is a unary relation.

Definition

A cardinal κ is a Vopěnka cardinal if κ is inaccessible, and for every set $A \subset V_{\kappa}$ of cardinality κ of Σ -structures, there are $\mathcal{M}, \mathcal{N} \in A$ such that there exists a non-trivial elementary embedding from \mathcal{M} to \mathcal{N} .

i.e.

 κ is inaccessible and

 $V_{\kappa} \vDash$ Vopěnka's Principle

where "classes" are taken to be arbitrary subsets of V_{κ} .

Indestructibility of Vopěnka Cardinals

A. Brooke-Taylor

Vopěnka cardinals are very large.

4日 > 4日 > 4日 > 4日 > 4日 > 4日 > 900

A. Brooke-Taylor

Vopěnka cardinals are *very* large.

Theorem (Solovay, Reinhardt and Kanamori)

An inaccessible cardinal κ is a Vopěnka cardinal if and only if, for every $A \subseteq V_{\kappa}$, there is an $\alpha < \kappa$ such that for every η strictly between α and κ , there is a λ strictly between η and κ and an elementary embedding

 $j: \langle V_{\eta}, \in, A \cap V_{\eta} \rangle \rightarrow \langle V_{\lambda}, \in, A \cap V_{\lambda} \rangle$

イロト イロト イヨト イヨト ヨー うくで

with critical point α , such that $j(\alpha) > \eta$.

A. Brooke-Taylor

Vopěnka cardinals are *very* large.

Theorem (Solovay, Reinhardt and Kanamori)

An inaccessible cardinal κ is a Vopěnka cardinal if and only if, for every $A \subseteq V_{\kappa}$, there is an $\alpha < \kappa$ such that for every η strictly between α and κ , there is a λ strictly between η and κ and an elementary embedding

 $j: \langle V_{\eta}, \in, A \cap V_{\eta} \rangle \rightarrow \langle V_{\lambda}, \in, A \cap V_{\lambda} \rangle$

イロト イロト イヨト イヨト ヨー うくで

with critical point α , such that $j(\alpha) > \eta$.

We call α as in the theorem extendible below κ for A.

A. Brooke-Taylor

Question:

Are Vopěnka cardinals consistent with other statements known to be independent of ZFC, assuming only that Vopěnka cardinals are themselves consistent? Statements like

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

- GCH
- existence of morasses
- a definable well-order on the universe
- etcetera

A. Brooke-Taylor

Question:

Are Vopěnka cardinals consistent with other statements known to be independent of ZFC, assuming only that Vopěnka cardinals are themselves consistent? Statements like

- GCH
- existence of morasses
- a definable well-order on the universe
- etcetera

One can obtain models for these statements by forcing.

Recall from Sy's tutorial:

Indestructibility of Vopěnka Cardinals

Recall from Sy's tutorial:

Strategy (due to Silver) Indestructibility of Vopěnka Cardinals

Recall from Sy's tutorial:

Strategy

(due to Silver)

▶ In V[G], build a P^M -generic H over M (not an issue here).

Indestructibility of Vopěnka Cardinals

Recall from Sy's tutorial:

Strategy

(due to Silver)

- In V[G], build a P^M -generic H over M (not an issue here).
- Do it in such a way that j " $G \subseteq H$.

Indestructibility of Vopěnka Cardinals

Recall from Sy's tutorial:

Strategy

(due to Silver)

- In V[G], build a P^M -generic H over M (not an issue here).
- Do it in such a way that j " $G \subseteq H$.

Then we can lift $j: V \to M$ to $j': V[G] \to M[H]$ by defining

$$j'(\sigma^{\mathsf{G}}) = (j(\sigma))^{\mathsf{G}}.$$

イロト イロト イヨト イヨト ヨー うくで

Indestructibility of Vopěnka Cardinals

Recall from Sy's tutorial:

Strategy

(due to Silver)

- ▶ In V[G], build a P^M -generic H over M (not an issue here).
- Do it in such a way that j " $G \subseteq H$.

Then we can lift $j: V \to M$ to $j': V[G] \to M[H]$ by defining

$$j'(\sigma^{\mathsf{G}}) = (j(\sigma))^{\mathsf{G}}.$$

This j' is well-defined and elementary because

$$p \Vdash \varphi(\sigma_1, \ldots, \sigma_n)$$
 iff $j(p) \Vdash \varphi(j(\sigma_1), \ldots, j(\sigma_n)).$

Indestructibility of Vopěnka Cardinals

A. Brooke-Taylor

・ロト・日本・山田・山田・山口・

A. Brooke-Taylor

Often the partial order P is sufficiently directed-closed that there is a single "master" condition p that extends every condition in the part of j"G relevant for the lifting argument.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

A. Brooke-Taylor

- Often the partial order P is sufficiently directed-closed that there is a single "master" condition p that extends every condition in the part of j"G relevant for the lifting argument.
- If this is the case, we choose G in such a way that H will contain p, and our embedding will lift, as desired.

イロト イロト イヨト イヨト ヨー うくで

A. Brooke-Taylor

- Often the partial order P is sufficiently directed-closed that there is a single "master" condition p that extends every condition in the part of j"G relevant for the lifting argument.
- ▶ If this is the case, we choose *G* in such a way that *H* will contain *p*, and our embedding will lift, as desired.

Note in particular that while we can choose G in such a way that the embedding is lifted, it does *not* follow that the embedding will lift for arbitrary choices of G.

A. Brooke-Taylor

Vopěnka's Principle is much more flexible than large cardinals given by a specific embedding:

うせん 同一人間を入出す (四) ふうや

Vopěnka's Principle is much more flexible than large cardinals given by a specific embedding:

If j : M → N witnesses Vopěnka's Principle for the class A, and we remove M from A, there will still be another embedding, by Vopěnka's Principle for the class A \ {M}.

Vopěnka's Principle is much more flexible than large cardinals given by a specific embedding:

- If j : M → N witnesses Vopěnka's Principle for the class A, and we remove M from A, there will still be another embedding, by Vopěnka's Principle for the class A \ {M}.
- The embeddings in question need not respect A, only one of its elements.

Vopěnka's Principle is much more flexible than large cardinals given by a specific embedding:

- If j : M → N witnesses Vopěnka's Principle for the class A, and we remove M from A, there will still be another embedding, by Vopěnka's Principle for the class A \ {M}.
- The embeddings in question need not respect A, only one of its elements. On the other hand, using the Solovay--Reinhardt-Kanamori characterisation, we have access to an embedding that *does* respect A.

Vopěnka's Principle is much more flexible than large cardinals given by a specific embedding:

- If j : M → N witnesses Vopěnka's Principle for the class A, and we remove M from A, there will still be another embedding, by Vopěnka's Principle for the class A \ {M}.
- The embeddings in question need not respect A, only one of its elements. On the other hand, using the Solovay--Reinhardt-Kanamori characterisation, we have access to an embedding that *does* respect A.

This gives us a lot of flexibility for manipulating names.

A. Brooke-Taylor

We shall prove:

Theorem

Let κ be a Vopěnka cardinal. Suppose $\langle P_{\alpha} | \alpha \leq \kappa \rangle$ is the reverse Easton iteration of $\langle \dot{Q}_{\alpha} | \alpha < \kappa \rangle$ where

- for each $lpha < \kappa$, $|\dot{Q}_{lpha}| < \kappa$, and
- for all $\gamma < \kappa$, there is an η_0 such that for all $\eta \ge \eta_0$,

 $\mathbb{1}_{P_{\eta}} \Vdash \dot{Q}_{\eta}$ is γ -directed-closed.

イロト イロト イヨト イヨト ヨー うくで

Then

 $\mathbb{1}_{P_{\kappa}} \Vdash \kappa$ is a Vopěnka cardinal.

A. Brooke-Taylor

We shall prove:

Theorem

Let κ be a Vopěnka cardinal. Suppose $\langle P_{\alpha} | \alpha \leq \kappa \rangle$ is the reverse Easton iteration of $\langle \dot{Q}_{\alpha} | \alpha < \kappa \rangle$ where

- for each $lpha < \kappa$, $|\dot{Q}_{lpha}| < \kappa$, and
- for all $\gamma < \kappa$, there is an η_0 such that for all $\eta \ge \eta_0$,

 $\mathbb{1}_{P_{\eta}} \Vdash \dot{Q}_{\eta}$ is γ -directed-closed.

Then

 $\mathbb{1}_{P_{\kappa}} \Vdash \kappa$ is a Vopěnka cardinal.

In particular, *every* choice of generic for P_{κ} yields an extension universe in which κ is Vopěnka.

A. Brooke-Taylor

Proof

Let G be P_{κ} -generic over V and consider a P_{κ} -name A for a subset A of V_{κ} .

A. Brooke-Taylor

Proof

```
Let G be P_{\kappa}-generic over V and consider a P_{\kappa}-name A for a subset A of V_{\kappa}.
```

Thanks to the axiom of choice, we may assume without loss of generality that (it is forced that) for each structure \mathcal{M} in A, the domain of \mathcal{M} is an ordinal.

A. Brooke-Taylor

Proof

```
Let G be P_{\kappa}-generic over V and consider a P_{\kappa}-name A for a subset A of V_{\kappa}.
```

Thanks to the axiom of choice, we may assume without loss of generality that (it is forced that) for each structure \mathcal{M} in A, the domain of \mathcal{M} is an ordinal.

In fact we can go much further, arranging that each name σ used for an element of A is *very* nice:

A. Brooke-Taylor

Lemma

Let A be a name for a set of Σ -structures with ordinal domains. There is a name \dot{A}' equivalent to \dot{A} such that for for every $\langle \sigma, \mathbf{p} \rangle \in \dot{A}$,

A. Brooke-Taylor

Lemma

Let \dot{A} be a name for a set of Σ -structures with ordinal domains. There is a name \dot{A}' equivalent to \dot{A} such that for for every $\langle \sigma, p \rangle \in \dot{A}$,

• σ is the canonical name for the structure $\langle \gamma_{\sigma}, E^{\sigma}, R^{\sigma} \rangle$ using names $\check{\gamma}_{\sigma}$, \dot{E}^{σ} , and \dot{R}^{σ} respectively for the components.

イロト イロト イヨト イヨト ヨー うくで

A. Brooke-Taylor

Lemma

Let \dot{A} be a name for a set of Σ -structures with ordinal domains. There is a name \dot{A}' equivalent to \dot{A} such that for for every $\langle \sigma, p \rangle \in \dot{A}$,

- σ is the canonical name for the structure $\langle \gamma_{\sigma}, E^{\sigma}, R^{\sigma} \rangle$ using names $\check{\gamma}_{\sigma}$, \dot{E}^{σ} , and \dot{R}^{σ} respectively for the components.
- the names E^σ and R^σ involve no conditions larger than is necessary:

イロト イロト イヨト イヨト ヨー うくで

A. Brooke-Taylor

Lemma

Let \dot{A} be a name for a set of Σ -structures with ordinal domains. There is a name \dot{A}' equivalent to \dot{A} such that for for every $\langle \sigma, p \rangle \in \dot{A}$,

- σ is the canonical name for the structure $\langle \gamma_{\sigma}, E^{\sigma}, R^{\sigma} \rangle$ using names $\check{\gamma}_{\sigma}$, \dot{E}^{σ} , and \dot{R}^{σ} respectively for the components.
- the names E^σ and R^σ involve no conditions larger than is necessary:

if δ is the least inaccessible cardinal greater than $\gamma_\sigma~$ such that $|P_\delta|\leq \delta~$ and

 $\zeta \geq \delta \rightarrow \Vdash_{P_{\zeta}} \dot{Q}_{\zeta} \text{ is } \gamma_{\sigma}^+ \text{-directed-closed}$

then \dot{R}^{σ} is a P_{δ} -name for a subset of γ_{σ} , and \dot{E}^{σ} is a P_{δ} -name for a subset of γ_{σ}^2 .

A. Brooke-Taylor

So assume that \dot{A} is of this nice form from the Lemma, and let α be extendible below κ for \dot{A} in V.

Let $\langle \sigma, q \rangle \in \dot{A}$ be such that $q \in G$ and σ^{G} is of rank greater than α .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

So assume that \dot{A} is of this nice form from the Lemma, and let α be extendible below κ for \dot{A} in V.

Let $\langle \sigma, q \rangle \in \dot{A}$ be such that $q \in G$ and σ^{G} is of rank greater than α .

Take inaccessible ξ large enough that $q \in P_{\xi}$ and σ is a P_{ξ} -name.

ション ふゆ アメリア メリア しょうくう

So assume that \dot{A} is of this nice form from the Lemma, and let α be extendible below κ for \dot{A} in V.

Let $\langle \sigma, q \rangle \in \dot{A}$ be such that $q \in G$ and σ^{G} is of rank greater than α .

Take inaccessible ξ large enough that $q \in P_{\xi}$ and σ is a P_{ξ} -name.

We may factorise P_{κ} as $P_{\kappa} = P_{\xi} * P^{\xi}$; G then gives us a generic G_{ξ} for \dot{P}_{ξ} .

So assume that \dot{A} is of this nice form from the Lemma, and let α be extendible below κ for \dot{A} in V.

Let $\langle \sigma, q \rangle \in \dot{A}$ be such that $q \in G$ and σ^G is of rank greater than α .

Take inaccessible ξ large enough that $q \in P_{\xi}$ and σ is a P_{ξ} -name.

We may factorise P_{κ} as $P_{\kappa} = P_{\xi} * P^{\xi}$; G then gives us a generic G_{ξ} for \dot{P}_{ξ} .

We shall show that it is dense in P^{ξ} to force there to be an elementary embedding *j* from σ^{G} to another member of *A*.

A. Brooke-Taylor

So, working in $V[G_{\xi}]$, suppose we are given some arbitrary p in P^{ξ} .

A. Brooke-Taylor

So, working in $V[G_{\xi}]$, suppose we are given some arbitrary p in P^{ξ} .

Let $\eta < \kappa$ be a bound on the support of p (that is, so that $p \in P^{[\xi,\eta)}$), and sufficiently large that for all $\eta' > \eta$, $\dot{Q}_{\eta'}$ is $|P_{\xi}|^+$ -directed-closed.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

A. Brooke-Taylor

So, working in $V[G_{\xi}]$, suppose we are given some arbitrary p in P^{ξ} .

Let $\eta < \kappa$ be a bound on the support of p (that is, so that $p \in P^{[\xi,\eta)}$), and sufficiently large that for all $\eta' > \eta$, $\dot{Q}_{\eta'}$ is $|P_{\xi}|^+$ -directed-closed.

Let $j : \langle V_{\eta}, \in, A \cap V_{\eta} \rangle \rightarrow \langle V_{\lambda}, \in, A \cap V_{\lambda} \rangle$ in V witness that α is η -extendible below κ for A. In particular, $j(\alpha) > \eta$.

A. Brooke-Taylor

So, working in $V[G_{\xi}]$, suppose we are given some arbitrary p in P^{ξ} .

Let $\eta < \kappa$ be a bound on the support of p (that is, so that $p \in P^{[\xi,\eta)}$), and sufficiently large that for all $\eta' > \eta$, $\dot{Q}_{\eta'}$ is $|P_{\xi}|^+$ -directed-closed.

Let $j : \langle V_{\eta}, \in, \dot{A} \cap V_{\eta} \rangle \rightarrow \langle V_{\lambda}, \in, \dot{A} \cap V_{\lambda} \rangle$ in V witness that α is η -extendible below κ for \dot{A} . In particular, $j(\alpha) > \eta$.

The cardinal α will certainly be inaccessible, so for any condition $q \in P_{\xi}$, the support of q below α will be bounded by some $\beta < \alpha$.

イロト イロト イヨト イヨト ヨー うくで

A. Brooke-Taylor

So, working in $V[G_{\xi}]$, suppose we are given some arbitrary p in P^{ξ} .

Let $\eta < \kappa$ be a bound on the support of p (that is, so that $p \in P^{[\xi,\eta)}$), and sufficiently large that for all $\eta' > \eta$, $\dot{Q}_{\eta'}$ is $|P_{\xi}|^+$ -directed-closed.

Let $j : \langle V_{\eta}, \in, \dot{A} \cap V_{\eta} \rangle \rightarrow \langle V_{\lambda}, \in, \dot{A} \cap V_{\lambda} \rangle$ in V witness that α is η -extendible below κ for \dot{A} . In particular, $j(\alpha) > \eta$.

The cardinal α will certainly be inaccessible, so for any condition $q \in P_{\xi}$, the support of q below α will be bounded by some $\beta < \alpha$.

So by elementarity the support of j(q) below $j(\alpha)$ is bounded below β .

Now since G_{ξ} is directed, j " G_{ξ} is directed, so by $|P_{\xi}|^+$ -directed-closure, there is a single condition r in P^{η} extending the tail (from α onward) of every element of j " G_{ξ} — the master condition.

The conditions p and r have disjoint supports, so they are compatible, and their common extension " $p \cup r$ " is a condition in P^{ξ} extending p that forces that $j \upharpoonright V_{\xi} : V_{\xi} \to V_{j(\xi)}$ will lift to an elementary embedding $j' : V_{\xi}[G_{\xi}] \to V_{j(\xi)}[G_{j(\xi)}]$.

イロト イロト イヨト イヨト ヨー うくで

A. Brooke-Taylor

So we have shown that it is dense for $j \upharpoonright V_{\xi}$ to lift; now we must use that to show that there is an elementary embedding between elements of A.

Since $\langle \sigma, q \rangle \in A$, $\langle j(\sigma), j(q) \rangle \in A$ by the assumption that j is elementary for structures incorporating A. We assumed that $q \in G_{\mathcal{E}}$, so the master condition forces that $j(\sigma)^G \in A$.

So we have shown that it is dense for $j \upharpoonright V_{\xi}$ to lift; now we must use that to show that there is an elementary embedding between elements of A.

Since $\langle \sigma, q \rangle \in A$, $\langle j(\sigma), j(q) \rangle \in A$ by the assumption that j is elementary for structures incorporating A. We assumed that $q \in G_{\xi}$, so the master condition forces that $j(\sigma)^{G} \in A$.

By the definition of j', $j' \upharpoonright \sigma^G$ is a map from σ^G to $j(\sigma)^G$, and it is elementary since j' is.

That is, $j' \upharpoonright \sigma^{G}$ is elementary from σ^{G} to $j(\sigma)^{G}$, both of which are in A.

Corollary

If the existence of a Vopěnka cardinal is consistent, then the existence of a Vopěnka cardinal is consistent with any of the following.

イロト イロト イヨト イヨト ヨー うくで

- ► GCH
- A definable well-order on the universe.
- Morasses at every infinite successor cardinal.